

7. Philosophy of Science

In high school you were probably introduced to something misleading called the scientific method. According to this picture of science, science proceeds by asking a question, formulating a hypothesis, designing an experiment to test the hypothesis, and analyzing the results to reach a conclusion. The experiment should be repeatable and the hypothesis is only considered well supported if our experimentation yields plenty of data in support of it. When we find plenty of data supporting our hypotheses, the pattern of reasoning employed is basic induction by enumeration where we generalize or predict based on observed patterns.

While this model does describe a frequently employed method in science, it's misleading to think of this as the scientific method. The disservice done to the actual practice of science by this bit of high school curriculum is really quite egregious. It's as if you were shown how to play a C major scale on the piano and then told "there you go, that's how to make music. That's the method." In actual practice, scientists employ a variety of methods that involve a broad range of patterns of reasoning, both inductive and deductive. Testing hypotheses often involves

things like hunting for clues, diagnosing unexpected results, engineering new ways of detecting evidence, and a great many things beyond designing experiments and generalizing based on the results of these. The support for a hypothesis is often a matter of inference to the best explanation rather than inductive generalization. Sometimes the best analysis of data seeks alternative explanations for data anomalies that do not fit with predictions rather than automatically counting such data as evidence against a hypothesis.

Investigating the messy, gritty details that drive actual scientific practice is where the real action in the philosophy of science is today. Explaining how science advances human understanding of the world often requires a close examination of what's going on in actual scientific practice. It is not uncommon for philosophers of science to describe their work as something like the science of science. Methods are not to be prescribed up front by the philosophical lords of epistemology. Rather, in contemporary philosophy of science we look to science to see what methods actually work, and then try to better understand the significance of these.

Over the past few chapters, we have covered a couple of classic skeptical problems. In the wake of Descartes and Hume you might worry that we can't know much at all. Lots of people are willing to just let the matter rest there and think we can only have so many subjective opinions, even about scientific matters (witness, for instance, the skepticism generated by deniers of climate science). It's hard, however, to take this uncritical skepticism seriously in the face of the truly impressive achievements of science over the past few centuries. Looking at these achievements, it seems we have powerful evidence for our ability to figure things out and get at many truths. So, the suggestion I want to make at the outset of this chapter is that the way to address the skeptical problems raised by Hume might be to examine more closely the methods by which we seem to attain knowledge and begin to sort out how they work in practice.

In this

80

chapter we will trace a few developments over the course of the 20th century with an eye to better understanding how the philosophy of science has developed into what it is today. We

will start with Logical Positivism, a broad empiricist movement of the early 20th century.

สวัสดีครับนักศึกษาทุกคน ยินดีต้อนรับเข้าสู่บทใหม่ที่น่าตื่นเต้นไม่แพ้กัน นั่นคือ "ปรัชญาวิทยาศาสตร์" (Philosophy of Science) ครับ ในบทที่แล้ว เดวิด ชูม ได้ทิ้งคำถามที่น่ากังวลใจไว้ว่า เราจะมั่นใจในวิทยาศาสตร์ได้อย่างไรถ้า "การอนุมาน" (Induction) ไม่มีเหตุผลรองรับ? วันนี้เราจะมาดูว่า ในโลกความเป็นจริง วิทยาศาสตร์ทำงานอย่างไร และปรัชญาของเรื่องนี้อย่างไรครับ

1. รีอ่อน "วิธีการทำงานวิทยาศาสตร์" แบบเดิมๆ

ในสมัยมัธยม พากเรามักจะถูกสอนเรื่อง "วิธีการทำงานวิทยาศาสตร์" ที่เป็นสูตรสำเร็จ: ตั้งคำถาม -> ตั้งสมมติฐาน -> ทดลอง -> วิเคราะห์ผล -> สรุป และบอกว่าถ้าทำซ้ำแล้วได้ผลเดิม นั่นคือความรู้ที่เชื่อถือได้

แต่อารย์อยากบอกว่า ภาพจำนี้ "คลาดเคลื่อน" และทำให้เราเข้าใจการทำงานของวิทยาศาสตร์ผิดไปมากครับ! มันเหมือนกับมีคนสอนคุณกดลิมเปียโนไลน์ตโดย เร มี แล้วบอกว่า "นี่แหล่ะคือวิธีการทำงานตรี" ทั้งที่ในความเป็นจริง ดนตรีมันซับซ้อนกว่านั้นมาก

2. วิทยาศาสตร์ในโลกความเป็นจริง

ในทางปฏิบัติ นักวิทยาศาสตร์ไม่ได้แค่ทำการทดลองแล้วสรุปแบบ "การอนุมานพื้นฐาน" (Basic Induction) เท่านั้น แต่พวกเขายังใช้สารพัดวิธี ทั้งการสืบหาเบาะแส การวินิจฉัยผลลัพธ์ที่คาดไม่ถึง การคิดค้นเทคโนโลยีใหม่ๆ เพื่อตรวจจับหลักฐาน และที่สำคัญที่สุดคือการใช้ "การอนุมานไปสู่คำอธิบายที่ดีที่สุด" (Inference to the Best Explanation)

ตัวอย่าง: บางครั้งข้อมูลที่ได้มา "ไม่ตรง" กับสมมติฐาน แทนที่นักวิทยาศาสตร์จะโยนสมมติฐานทิ้งทันที พวกเขายังจะมองหา "คำอธิบายทางเลือก" ว่าทำไมข้อมูลถึงผิดปกติ (เช่น เครื่องมือเสีย หรือมีปัจจัยอื่นแทรกซ้อน)

ดังนั้น ปราชญาวิทยาศาสตร์ในปัจจุบันจึงไม่ได้ทำหน้าที่เป็น "เจ้าขุนมูลนาย" มากอย่างสั่งว่า นักวิทยาศาสตร์ต้องทำตัวยังไง แต่เราทำตัวเหมือนเป็น "วิทยาศาสตร์ของวิทยาศาสตร์" (Science of Science) คือเข้าไปสังเกตการณ์ว่าวิธีไหนที่นักวิทยาศาสตร์ใช้แล้ว "เวิร์ก" แล้วจึงพยายามทำความเข้าใจความหมายและเหตุผลเบื้องหลังวิธีเหล่านั้นคับ

3. การตอบโต้ความสงสัยนิยม (Skepticism)

หลังจากเรียนเรื่องเดสการ์ต์และญมมา นักศึกษาบางคนอาจจะเริ่มท้อและคิดว่า "นั่นเราก็คงรู้อะไรไม่ได้เลยสินะ ทุกอย่างก็แค่ความเห็นส่วนตัว" ซึ่งนำไปสู่การปฏิเสธวิทยาศาสตร์ (เช่น เรื่องการเปลี่ยนแปลงสภาพภูมิอากาศ)

แต่อาจารย์ขอให้พวกเรามองดู "ความสำเร็จของวิทยาศาสตร์" ในช่วงไม่กี่ร้อยปีที่ผ่านมาสิครับ ทั้งการไปดวงจันทร์ การรักษาโรคระบาด และเทคโนโลยีที่เราใช้คุยกันอยู่นี้ สิ่งเหล่านี้คือ หลักฐานอันทรงพลัง ว่ามนุษย์เรา มีความสามารถในการเข้าถึง "ความจริง" ได้

4. ก้าวต่อไป: ปฏิฐานนิยมเชิงตรรกะ (Logical Positivism)

เพื่อจะตอบโต้ญมและทำความเข้าใจวิทยาศาสตร์ให้ดีขึ้น เราจะเริ่มศึกษาพัฒนาการของปรัชญาวิทยาศาสตร์ในศตวรรษที่ 20 โดยเริ่มจากกลุ่มที่ชื่อว่า "ปฏิฐานนิยมเชิงตรรกะ" (Logical Positivism) ครับ

กลุ่มนี้คือเหล่านักประสบการณ์นิยมสายแข็งที่พยายามจะขีดเส้นแบ่งให้ชัดเจนว่า:

อะไรคือ "วิทยาศาสตร์" (ที่พิสูจน์ได้)

อะไรคือ "เรื่องเพ้อฝัน" (ที่พิสูจน์ไม่ได้)

สรุปสังท้ายจากอาจารย์

ปรัชญาวิทยาศาสตร์ไม่ใช่เรื่องของการนั่งนิ่งในห้องสมุด แต่เป็นการออกไปดูว่ามนุษย์เรา "รู้" สิ่งต่างๆ ได้อย่างไรในโลกที่เต็มไปด้วยความซับซ้อน

นักศึกษาครับ... นักศึกษาคิดว่า ระหว่าง "การทดลองในห้องแล็บที่ควบคุมได้" กับ "การสังเกตการณ์ปรากฏการณ์ทางธรรมชาติที่ควบคุมไม่ได้เลย" อย่างไหนที่นักศึกษาคิดว่าให้ความจริงที่ 'จริง' กว่ากัน? และเพื่อะไรครับ?

ควบหน้า เราจะมาดูว่ากลุ่ม Logical Positivism พยายามจะใช้ "ตรรกะ" มาชี้ระลักษณ์วิทยาศาสตร์ให้บริสุทธิ์ได้อย่างไร เจอกันครั้งหน้าครับ!

Logical Positivism

The contemporary analytic tradition in philosophy that is now globally well-established got its start with Logical Positivism at the beginning of the 20th century in Vienna. Logical Positivism can be understood as Empiricism, heavily influenced by Hume, and supercharged with powerful new developments in symbolic logic. The system of logic that we now teach in college level symbolic logic courses (PHIL& 120 at BC) was developed just over a century ago in the work of Gotlob Frege, Bertrand Russell, and Albert North Whitehead for the purpose of better understanding

the foundations of mathematics. In Principia Mathematica, Russell and Whitehead made a case for analyzing all of mathematics in terms of logic (together with set theory). According to the argument of Principia Mathematica, mathematical truths are not truths justified independent of experience by the light of reason alone. Rather they are derivable from logic and set theory alone. Merely logical truths are trivial in the sense that they tell us nothing about the nature of the world. Any sentence of the form ‘Either P or not P’, for instance, is a basic logical truth. But, like all merely logical truths, sentences having this form assert nothing about how the world is. Logic doesn’t constitute knowledge of the world; it is merely a tool for organizing knowledge and maintaining consistency.

Mathematics had long served as the rationalist’s paradigm case of knowledge justified through reason alone. So, we can make a powerful case for Empiricism by showing that math is really just an extension of logic. It remains debatable whether Frege, Russell, and Whitehead succeeded in showing this, but their attempt, and especially the powerful new system of logic they developed in making this attempt, constituted a powerful blow against Rationalism and inspired a group of empirically minded

philosophers and scientists in Vienna to employ the same logical tools in analyzing and clarifying philosophical issues in science. As we will see, their ambitions were even grander since they also argued that much of what was going on in philosophy at the time was literally meaningless.

While we have moved on from most of the views about science promoted by the Logical Positivists, this movement represents a thorough house cleaning in philosophy. Logical Positivism marks the end of the grand system building we can see in Plato and Descartes. Philosophy since generally proceeds by addressing fairly specific problems. Speculative metaphysical theories, often seen as expressing the spirit of a culture or nation (Heidegger, for example) are thoroughly repudiated. Philosophy after the Logical Positivists proceeds as a disciplined branch of inquiry not so different in kind from science, but differing only in subject matter. While philosophers usually don't engage in empirical experimentation (though sometimes they do), philosophers from here on are generally sensitive to the findings of empirical science and how these frame, raise, or resolve philosophical issues.

We will consider three central projects taken on by the Positivists in developing their Empiricist view of scientific knowledge. These are the demarcation problem, the problem of distinguishing science from non-science, developing a view about what a scientific theory is, and giving an account of scientific explanation. The Positivists utilize the resources of symbolic logic in each of these projects.

สวัสดีครับนักศึกษาทุกคน วันนี้เราจะมาทำความรู้จักกับกลุ่มปรัชญาที่เป็นเสมือน "พายุ" ที่เข้ามายัดระเบียบวงการปรัชญาในช่วงต้นศตวรรษที่ 20 นั้น คือกลุ่ม "ปฏิฐานนิยมเชิงตรรกะ" (Logical Positivism) ครับกลุ่มนี้มีจุดเริ่มต้นที่กรุงเวียนนา ประเทศออสเตรีย ถือเป็นจุดกำเนิดของสายาระปรัชญาวิเคราะห์ (Analytic Tradition) ที่เราเรียนกันอยู่ในปัจจุบัน โดยมีเป้าหมายหลักคือการนำปรัชญามาปัจจุบัน ให้สามารถอธิบาย ได้โดยใช้เครื่องมือที่ทรงพลังที่สุดในยุคนั้นคือ "ตรรกศาสตร์สัญลักษณ์" (Symbolic Logic) ครับ

1. การพนึกกำลัง: ชูม + ตรรกศาสตร์สมัยใหม่หากจะเข้าใจ Logical Positivism ให้มองว่ามันคือการนำ ประสบการณ์นิยมของชูม (Hume's Empiricism) มาติดอาวุธหนักด้วยตรรกศาสตร์สมัยใหม่ครับตรรกศาสตร์ไม่ใช่ความรู้เรื่องโลก: นักคิดอย่าง แฟร์เกอ, รัสเซลล์ และ ไวท์เฮด พยายามพิสูจน์ว่าคณิตศาสตร์ทั้งหมดจริงๆ และสามารถลดรูปเหลือเพียงแค่

ตรรศาสตร์ (และทฤษฎีเซต) ได้ความจริงที่ว่า "เปล่า": ประโยชน์ทางตรรกะ เช่น "ผนตก หรือ ผนไม่ตก" ($\$P \setminuslor \setminusneg P\$$) เป็นความจริงเสมอ แต่มันไม่ได้บอกอะไรเราเลยว่า ข้างนอกนั้นผนกำลังตกอยู่จริงๆ หรือไม่ เครื่องมือจัดระเบียบ: สำหรับกลุ่มนี้ ตรรกะไม่ใช่แหล่งกำเนิดความรู้ใหม่ แต่มันคือ "เครื่องมือ" ชั้นยอดในการจัดระเบียบความรู้และตรวจสอบความสมเหตุสมผลของข้อสรุปครับ

2. การ "ล้างบ้าน" ครั้งใหญ่ในโลกปรัชญากลุ่ม Logical Positivism มองว่า ปรัชญาแบบเดิมที่ชอบสร้างระบบอภิปรัชญาใหญ่โต (แบบเพลโตหรือเดส์การ์ต์ส) หรือพวกที่พูดเรื่องจิตวิญญาณของวัฒนธรรมที่จับต้องไม่ได้ (แบบไฮเดกเกอร์) เป็นเรื่องที่ "ไร้สาระและไม่มีความหมาย" (Meaningless) ในเชิง ตรรกะจบยุคสร้างอาณาจักร: ปรัชญาบ้านจานี้จะไม่ใช่นักเก็บกำไรความจริง แต่จะเป็นสาขาวิชาที่เน้นการแก้ปัญหาเฉพาะจุด (Specific problems) คล้ายกับวิธีคิดของนักวิทยาศาสตร์พันธมิตรของวิทยาศาสตร์: แม้นักปรัชญาจะไม่ได้ออกไปทำการทดลองเอง แต่พวกเขาก็ทำงานคู่ขนานไปกับ วิทยาศาสตร์ โดยค่อยวิเคราะห์ว่าผลการทดลองเหล่านั้นส่งผลต่อกรอบ ความคิดหรือปัญหาทางปรัชญาอย่างไร

3. สามภารกิจหลักของกลุ่ม Positivists เพื่อให้เห็นภาพชัดเจนว่า กลุ่มนี้ พยายามทำอะไร เราจะศึกษาไปร่องรอยเจ้า 3 อย่างที่พวกเขากำหนดไว้ คือ ตรรศาสตร์ สัญลักษณ์เข้าจัดการ: ปัญหาการแบ่งเขต (The Demarcation Problem): เราจะจัดเส้นแบ่งอย่างไรว่าอะไรคือ "วิทยาศาสตร์" และอะไรคือ "ไม่ใช่" (เช่น ศาสนา หรือเรื่องลี้ลับ)? โครงสร้างทฤษฎี (The Nature of Scientific

Theory): ทฤษฎีหนึ่งๆ ควรประกอบด้วยอะไรบ้างในเชิงตรรกะ? การอธิบายทางวิทยาศาสตร์ (Scientific Explanation): การ "อธิบาย" ปรากฏการณ์หนึ่งๆ ให้เป็นเหตุเป็นผลในทางวิทยาศาสตร์นั้นมีรูปแบบอย่างไร?

สรุปสังท้ายจากอาจารย์

Logical Positivism อาจจะดู "แข็งกร้าว" ไปบ้าง เพราะพากเขาตัดทุกอย่างที่พิสูจน์ไม่ได้ด้วยประสาทสัมผัสทิ้งไป แต่พากเขาก็คือคนที่ทำให้ปรัชญาภายในเป็นเรื่องที่ชัดเจน และเชื่อมโยงกับโลกความเป็นจริงอย่างเป็นวิทยาศาสตร์ที่สุดครับนักศึกษาครับ... ถ้ามีคนบอกคุณว่า "ในห้องนี้มีพลังงานงานบางอย่างที่มองไม่เห็น สัมผัสมิได้ และเครื่องมือวิทยาศาสตร์ตรวจไม่เจอ" ตามหลักของกลุ่ม Logical Positivism ประโยชน์จะถือว่า "ไร้ความหมาย" ทันที นักศึกษาคิดว่าการตัดสินแบบนี้ยุติธรรมกับ 'ความจริง' ของโลกเราไหมครับ? คabant เราจะมาดูรายละเอียดของการกิจแรก นั้นคือ การแยกแยะว่าอะไรคือ "วิทยาศาสตร์แท้" และ "วิทยาศาสตร์เทียม" ครับ! มีคำถามเกี่ยวกับเรื่องตรรกะหรือแนวคิดพื้นฐานก่อนไหมครับ?

.....

The Demarcation Problem

Among the main tasks the Positivists set for themselves was that of distinguishing legitimate science from other rather suspect fields and methods of human inquiry. Specifically, they wanted to distinguish science from religion, metaphysics, and pseudo-science like astrology.

The speculation and lack of clarity in most 19th century philosophy often made philosophy more representative of national or cultural viewpoints and values than straight inquiry into philosophical issues and ideas. Logical Positivism took such thinking to be literally meaningless as a representation of any shared reality. In doing so, they were taking a stance against thinking behind the rising tide of nationalism and fascism that took root in Europe, Germany in particular, and ultimately led to Nazism and the World War II. Politically, many members of the Vienna Circle that started Logical Positivism were liberal or socialist. Ethnically, many were Jewish or of Jewish ancestry. Most members of the Vienna Circle ultimately became refugees around the time Nazi Germany annexed Austria in the years leading up to World War II. Many wound up in the US or Britain.

19th century German metaphysics involved attempts to reason about such obscure notions as “the absolute,” or the nature of “the nothing.” Such metaphysics needed to be distinguished from genuine science. We had also seen appeal to obscure empirically suspicious entities and forces in Aristotelian science such as the “vital force” to explain life, or the “dormative virtue” a mysterious power of substances like opium to cause sleep. Such mysterious forces needed to be eliminated from genuine scientific discourse.

While metaphysics and talk of obscure forces in science were to be distinguished from genuine science, the Positivists needed to preserve a role for unobservable theoretical entities like atoms and electrons. The rejection of metaphysics and obscure forces must not undermine the legitimate role for theoretical entities.

The Positivists employed Empiricism in their proposed solution to the demarcation problem. Empiricism, as we know, is just the view that our sense experience is the ultimate source of justification for all of our factual knowledge of the world. The Positivists extend Empiricism to cover not just the justification of knowledge, but the meaningfulness of language as well. In particular, the Positivists advanced what they called The

Verificationist Theory of Meaning (VTM). We can formulate the VTM as follows:

- A sentence is meaningful only if we can specify observable conditions that would verify it as true or false.

82

The kind of meaning we are concerned with here is representational. That is, the VTM is a standard of meaningfulness for language that aims to represent the world as being one way or another. There is other language, like love poetry, that isn't really concerned with what is true or false. Love poetry is more concerned with evoking feelings, and the Positivists aren't opposed to us using language for things other than describing what is true or false. They just aim to get clear on the difference and their proposal for doing this is the VTM.

The VTM has it that a sentence counts as meaningful only if we can specify the observable conditions under which it would count as true or false. This view is aimed at distinguishing empirically respectable scientific language from nonsense. So, we have a view on which science is distinguished as meaningful while pseudo-science, religion, poetry etc. are, strictly speaking,

meaningless. Likewise, most of philosophy turns out to be meaningless as well. Not only will obscure 19th century German metaphysics turn out to be meaningless, but talk of free will, immaterial substances, and all of ethics will likewise turn out to be meaningless. The only legitimate role left for philosophers, according to the Logical Positivists, will be the logical analysis of scientific discourse. Being meaningless, religion, pseudo-science, most of philosophy, literature etc. is neither true nor false. While these things cannot be true or false, according to Positivists' criteria for meaningfulness, they may provide helpful expressions of human emotions, attitudes towards life, etc. That is, poetry, literature, religion, and most philosophy will be merely so much comforting or disturbing babble, mere coos, squeals, or screams. Significant progress is made by paying close attention to the meaningfulness of scientific discourse. But the Verificationist Theory of Meaning eventually falls apart for a number of reasons including that it turns out not to be meaningful according to its own criteria. Amusingly, we can't provide an empirical test of truth or falsity for the claim that a claim is meaningful only if we can provide an empirical test for its truth or falsity. That is, according to the Verificationist Theory of Meaning, the term

“meaningful” turns out to be meaningless. Logical Positivism remained a powerful influence in philosophy through much of the 20th century and it did serve to weed out some pretty incomprehensible metaphysics. But I can now happily report that other important areas of philosophy, notably ethics and metaphysics, have recovered from the Positivists’ assault on philosophy from within. While we have moved on from most of the views propounded by Positivists, the more enduring influence has been to raise the standards of clarity and logical rigor in philosophy. This is necessary for philosophy to proceed as a kind of inquiry, unfettered by nationalist or culturally bound bias.

Theories

Understanding the Logical Positivist view of theories requires that we say a few things about formal languages. The symbolic logic developed in Russell and Whitehead’s Principia Mathematica is a formal language. Computer languages are also formal languages. A formal language is a precisely specified artificial language. A formal language is specified by doing three things:

- identify the language's vocabulary.
- identify what counts as a well formed expression of that language.
- give axioms or rules of inference that allow you to transform certain kinds of well formed expressions into other kinds of well formed expressions.

Scientific theories are formal languages according to the Positivists. We can understand what this means by considering the component parts of a scientific theory and how these map on to the elements of formal languages just given. A theory consists of the formal language of first order predicate logic with quantifiers (the logic developed first by Frege and then in greater detail by Russell and Whitehead) supplemented with observational vocabulary, correspondence rules that define theoretical terms in terms of observational vocabulary, and statements of laws like Galileo's laws of motion, Newton's law of universal gravitation etc. All of the non-logical vocabulary of a scientific theory is definable in observational terms. Well formed expressions in scientific discourse will be only those expressible in terms of formal logic plus the vocabulary of science. The rules

of inference in scientific discourse consist only of the rules of inference of logic and math plus scientific laws.

The Logical Positivist's view of what a theory is has since been deemed overly formalized. There are numerous legitimate theories in science that can't be rendered in a formal system. Consider theories in anthropology or geology for instance. Nevertheless, the idea of a theory as a formal system is a powerful one and it remains the gold standard in many sciences. Linguistics has “gone computational” in recent years, for instance. The most ambitious scientific undertaking in all of human history, the science of climate change, also aims to render theory and explanation in formal systems through massive and intricately detailed computer models of climate change. In fact, roughly speaking, we can consider a theory formalizable when it can be comprehensively modeled on a computer. Computer programs are paradigm examples of formal systems.

A further more general lesson we might take from the Positivist's view of theories addresses a very commonplace misunderstanding of what a theory is. People commonly think of theories as just claims that lie on a scale of certainty being somewhat more certain than guesses or hypotheses, but rather

less certain than established matters of fact. This is really a terrible misunderstanding of what a theory is. It is commonly invoked in fallacious attempts to discredit science, as when people dismiss evolution or climate change science as “just a theory.” Such comments reveal a basic misunderstanding of what theory is. For something to count as a theory has nothing to do with our level of certainty in its truth. Many scientific theories are among the best established scientific knowledge we have. A few years ago, for instance, some scientist claimed to have observed a particle in a particle accelerator travelling faster than the speed of light. It made the news and caused a bit of excitement. But those in the know, those who understand Einstein’s special relativity and the full weight of the evidence in support of it patiently waited for the inevitable revelation that some clocks had been mis-calibrated. Einstein’s special relativity is right and we know this with about as much certainty as we can know

84

anything. In the other direction, there are lots of genuine theories that we know full well to be false. Aristotle’s physics would be one example. Having very much or very little confidence in

something has nothing to do with whether it is properly called a theory.

So if it's not about our degree of confidence, what does make something a theory? What makes something a theory is that it provides a general framework for explaining things. The Positivists didn't discover this, but their idea of a theory as a formal system illustrates the idea nicely. Theories generally consist of a number of logically interconnected principles that can be mutually employed to explain and predict a range of observable phenomenon. Bear this in mind as we consider the Positivist's view of scientific explanation.

สวัสดีครับนักศึกษาทุกคน วันนี้เราจะมาเจาะลึกหนึ่งในการกิจที่สำคัญที่สุดของกลุ่มปฏิรูปนิยมเชิงตรรกะ (Logical Positivism) นั่นคือ "ปัญหาการแบ่งเขต" (The Demarcation Problem) หรือการขีดเส้นแบ่งว่าอะไรคือวิทยาศาสตร์ที่แท้จริง และอะไรคือเรื่องไร้สาระครับ

1. ทำไมต้องแบ่งเขต? บริบททางการเมืองและสังคม

นักศึกษาอาจสงสัยว่าทำไมพวกรเข้าต้อง "เข้มงวด" ขนาดนั้น? สาเหตุหนึ่งมาจากการที่ในยุคต้นศตวรรษที่ 20 ครับ

ต่อต้านอุดมการณ์สุดโต่ง: สมาชิกของกลุ่มเวียนนา (Vienna Circle) หลายท่านมีเชื้อสายยิว หรือมีแนวคิดแบบเสรีนิยม/สังคมนิยม ในขณะนั้นยุโรปกำลังเผชิญกับการผงาดขึ้นของลัทธิชาตินิยมและfaschism (ซึ่งนำไปสู่การรุกรานในเวลาต่อมา)

ปฏิเสธความคุณเครื่อ: พวกเขามองว่าอภิปรัชญาเยอร์มันในศตวรรษที่ 19 ที่พูดเรื่อง "จิตวิญญาณของชาติ" หรือ "ความว่างเปล่า (The Nothing)" เป็นคำพูดที่เลื่อนลอยและถูกนำเสนอไปใช้โฆษณาชวนเชื่อได้ง่าย

ตัวเลขที่น่าสนใจ: ในช่วงปี 1930 สมาชิกกลุ่มเวียนนาเกือบทั้งหมดต้องกล้ายกย่องจากการที่นาซีเยอรมนีพนักออสเตรีย (Anschluss) ส่งผลให้เหล่านักปรัชญาเหล่านี้กระจำจายไปอยู่ในสหราชอาณาจักร และอังกฤษ ซึ่งเป็นการขยายอิทธิพลของปรัชญาสายนี้ไปทั่วโลก

2. หลักการตรวจสอบความจริง (The Verificationist Theory of Meaning - VTM)

อาวุธที่พวกเขาระบุใช้เบ่งเขตคือ VTM ซึ่งกล่าวว่า:

"ประโยชน์หนึ่งจะมี 'ความหมาย' ก็ต่อเมื่อเราสามารถระบุเงื่อนไขที่สังเกตได้ (Observable conditions) เพื่อพิสูจน์ว่ามันจริงหรือเท็จ"

ວິທາສາສົກ: ມີຄວາມໝາຍ ເພຣະເຣີສູງນີ້ໄດ້ດ້ວຍກາຮັດສັງເກດ

ອົງປັບປຸງ ຕາສາ ແລະ ຈິຍາສາສົກ: ຖຸກຕີຄວາມວ່າ "ໄຮ້ຄວາມໝາຍ" (Meaningless) ໄນໃໝ່ວ່າມັນຜິດນະຄັບ ແຕ່ມັນ "ຕຽບສອບໄມ້ໄດ້" ຈຶ່ງໄມ່ຕ່າງອະໄຮກັບກາຮັດສັງເກດ (babble) ເຊັ່ນ ບທກວິວາຈະຊ່ວຍກະຕຸນອາຮມັນ ແຕ່ໄມ້ໄດ້ບອກຄວາມຈິງເກື່ອງກັບໂລກ

3. ທຸກໝົງຄືອະໄຮ? (Theories as Formal Languages)

ກຸລຸ່ມ Positivists ມອງວ່າ ທຸກໝົງຄືທັງວິທາສາສົກຄວາມຈິດຮະບັບໄທ້ເປັນ "ກາງານເຊີງຕຽບສັງເກດທີ່ເຄີຍຕົ້ນ" (Formal Languages) ດັ່ງກ່າວກັບກາງານຄອມພິວເຕອຮີໃນປັດຈຸບັນ:

ຕ້ອງມີຄຳສັ່ພົດທີ່ໜີ້ຈັດເຈນ (Vocabulary)

ມີກຸກາຮັດສັງເກດທີ່ຖືກຕ້ອງ (Well-formed expressions)

ມີການນິຍາມຄຳສັ່ພົດທັງທຸກໝົງ (ເຊັ່ນ ອະຕອມ, ອີເລີກຕຽບ) ເຊື່ອມໂຍງກັບສິ່ງທີ່ສັງເກດໄດ້ (Correspondence rules)

4. ແກ້ຄວາມເຂົ້າໃຈຜິດ: "ກີ້ແຄ່ທຸກໝົງ?"

ນີ້ຄືອຈຸດທີ່ອາຈາຍຢ່າງໃຫ້ກັບກົດໝາຍຈຳໄວ້ໄທ້ດີກັບ ດັ່ງກ່າວກັບກາງານຄຳສັ່ພົດທັງທຸກໝົງ "ທຸກໝົງ" ໃນຄວາມໝາຍວ່າ "ກາຮັດເດືອນທີ່ຍັງໄມ້ມັ້ນໃຈ" (ເຊັ່ນ "ວິວັດນາກາຮັດກີ້ແຄ່ທຸກໝົງ") ແຕ່ນີ້ຄືອຄວາມເຂົ້າໃຈທີ່ຜິດມ້ານຕົ້ນ!

ທຖາງວິໄມໃຈຮະດັບຄວາມມັນໃຈ: ທຖາງວິໄມສັນພັກພາພຂອງໄອນ໌ສິຕິເປັນທຖາງວິໄມທີ່ເຮັມມັນໃຈເກືອບ 100% ສ່ວນພິສິກສົ່ງຂອງອຣິສໂຕເຕີລິກີ່ເປັນທຖາງວິໄມທີ່ເຮັມມັນໃຈວ່າຜິດທຖາງວິໄມຄື່ອງ "ກຮອບໃນກາຮອິບາຍ" (Framework): ສິ່ງທີ່ທຳໃຫ້ບາງອ່າງເປັນທຖາງວິໄມ ຄື່ອກາຮທີ່ມັນມີໂຄຮສ້າງທີ່ເຂື່ອມໂຍງກັນທາງຕຽບຕະກະ ເພື່ອໃໝ່ ອິບາຍແລະທໍານາຍ ປຣາກງາກຮານົ່ວ່າງຕ່າງໆ ໄດ້ອ່າງກວ້າງຂວາງ

5. ບທວິພາກ່າ: ເນື່ອ "VTM" ຕກມ້າຕາຍເອງ

ສຸດທ້າຍແລ້ວ ພັດທະນາ ພັດທະນາ ວິທະຍາ ກີ່ເສື່ອມຄວາມນິຍມລົງດ້ວຍເຫຼຸຜລົງທີ່ນ່າຕລກຄຮັບ ຄື່ອ "ຕົວພັດທະນາ ວິທະຍາ ເອງກີ່ສອບຕາມເກີນທີ່ຂອງມັນ"

ປະໂຍດທີ່ວ່າ "ປະໂຍດຈະມີຄວາມໝາຍກີ່ຕ່ອມເມື່ອຕຽບຕະກະ ໄດ້ດ້ວຍປະສົບກຮານ" ເປັນປະໂຍດທີ່ເຮົາ "ໄຟສາມາດຕຽບຕະກະ ໄດ້ດ້ວຍປະສົບກຮານ ຄຮັບ! ດັ່ງນັ້ນຕາມຕຽບຕະກະຂອງກຸ່ມນີ້ ພັດທະນາທີ່ເປັນຫົວໃຈຂອງພວກເຂົາກລັບກລາຍເປັນເຮືອງ "ໄຮ້ຄວາມໝາຍ" ໄປເສີຍເອງ

ສຽງສິ່ງທ້າຍຈາກອາຈານ

ແນ້ກລຸ່ມ Positivists ຈະລົມສລາຍໄປ ແຕ່ສິ່ງທີ່ພວກເຂົາທີ່ໄວ້ຄື່ອງ "ມາຕຮຽນຄວາມໝາຍ ແລະ ພັດທະນາ" ທີ່ສິ່ງທີ່ທຳໃຫ້ປະຈຸບາປັ້ງຈຸບັນທຳນາງປະສານກັບວິທະຍາສາສຕຣີໄດ້ອ່າງຮາບຮິ່ນ

นักศึกษาครับ... ถ้าทฤษฎีไม่ใช่เรื่องของการ "เดา" แต่เป็นเรื่องของ "การวางแผนสร้างเพื่อธิบายโลก" นักศึกษาคิดว่าทฤษฎีที่ "ดี" ควรจะมีคุณสมบัติอะไรบ้างนอกจากเรื่องความถูกต้องครับ?

ในหัวข้อนี้ เราจะมาดูว่าวิทยาศาสตร์ "ธิบาย" สิ่งต่างๆ อย่างไร ผ่านไม่เดลการธิบายทางวิทยาศาสตร์ครับ! มีคำตามเรื่องการแบ่งเขตวิทยาศาสตร์กับวิทยาศาสตร์เทียม (เช่น โทรศาสตร์) ไหมครับ?

Explanation

According to the Deductive Nomological model of explanation developed by the Logical Positivist, Carl Hempel, a scientific explanation has the form of a deductively valid argument. The difference between an argument and an explanation is just their respective purposes. Formally, arguments and explanations look alike. But the purpose of an explanation is to shed light on something we accept as true, while the purpose of an argument is to give us a reason for thinking something is true. Given this difference in purpose, we call the claim that occupies the place of the conclusion the explanandum (it's the fact to be

explained), and the claims that occupy the place of the premises the explanans (these are the claims that, taken together, provide the explanation). In a scientific explanation, the explanans will consist of laws and factual claims. The factual claims in conjunction with the laws will deductively entail the explanandum. For example, consider this explanation for why a rock falls to the earth:

1. $F = GM_1M_2/r^2$, Newton's law of universal gravitation which tells us that massive bodies experience a force of mutual attraction that is proportionate to their mass and inversely proportionate to the distance between them.
2. $F=MA$. This is the force law, which tells us that force equals mass times acceleration.
3. The rock has mass of 1 Kg.
4. The earth has a mass of 5.97219×10^{24} kilograms.
5. The rock was released within the gravitational field of the earth.
6. No forces prevented the rock from falling to the earth.
7. The rock fell to the earth.

Recall that deductive logic is part of every theory, every explanatory framework. The first two claims in this explanation are statements of law from Newtonian physics. The remaining four are statements of fact. Taken together, these six claims deductively entail the explanandum, that the rock fell to the earth. This should illustrate how theories function as explanatory frameworks.

One very useful thing Hempel's account of explanation does is alert us to the argument-like structure of developed explanations. The basic idea here is that a complete explanation should

85

include all of the facts involved in making the fact to be explained true. These will include both particular facts relevant to the specific fact we want explained and general principles (scientific laws in the case of scientific explanations) that belong to a broader framework for explanation. A fully developed explanation reveals a logical relationship between the fact we want to explain, other relevant facts and connecting principles like laws of nature.

Hempel's account of explanation faced a number of problems that have helped to refine our understanding of scientific explanation. We won't address them here except to mention one because it's amusing. Consider this explanation:

1. Men who take birth control pills do not get pregnant.
2. Bruce is a man and he takes birth control pills.
3. Bruce is not pregnant.

This seems to meet all of the positivist's criteria for being an explanation. But aside from being silly, it's at least not a very good explanation for why Bruce is not pregnant. Problem cases like this suggest that purely formal accounts of explanation like Hempel's will fall short in sorting which facts are relevant in an explanation.

There is also a more general lesson I'd like you to take from the positivist's account of explanation. For your entire career as a student you've been asked to explain things, but odds are nobody has ever really explained what it means to explain something. Personally, I don't think I had ever given a thought to what an explanation was until I encountered the Deductive Nomological account in a Philosophy of Science class. But now

you've been introduced to a model of explanation. You may not find it fully applicable to every academic situation you encounter. But if you try to make use of it by thinking of explanations as having a developed argument like structure, you might find grades in many of your classes improving significantly.

We mentioned at the outset that Logical Positivism was very much influenced by Hume's Empiricism. You will recall that Hume argued for some surprising skeptical results. The Logical Positivists adopted one of two strategies for dealing with this. On some issues it was argued that Hume's skeptical conclusions were acceptable, while on others Hume's skepticism was regarded as a problem yet to be solved. As an example of the first strategy, Bertrand Russell, though not a Logical Positivist himself, wrote an influential paper in which he argued that science can proceed as usual without any reference to the notion of causation. Skepticism about necessary causal connections was deemed not to be problematic. Skepticism about induction was more difficult to accept. So the early 20th century saw a variety of sometimes colorful but generally unsuccessful attempts to resolve the problem of induction. And this brings us to Karl Popper.

สวัสดีครับนักศึกษาทุกคน วันนี้เรามาถึงหัวข้อที่อาจารย์คิดว่ามีประโยชน์มาก ไม่ใช่แค่ในวิชาปรัชญา แต่รวมถึงการเรียนในทุกสาขาวิชาของพวกเราด้วย นั่นคือเรื่อง "การอธิบาย" (Explanation) ในทางวิทยาศาสตร์ครับ นักศึกษาเคยสงสัยไหมครับว่า เวลาอาจารย์สั่งให้เรา "ง้ออธิบาย..." จริงๆ แล้วเข้าต้องการอะไร? วันนี้เราจะมาดูโมเดลที่ชื่อว่า Deductive Nomological (D-N Model) ของ คาร์ล 哼佩ล (Carl Hempel) นักปรัชญาในกลุ่มปฎิฐานนิยมเชิงตรรกะครับ

1. โครงสร้างของการอธิบาย: ต่างจาก "การโต้แย้ง" อย่างไร? เหมือนกันว่า ในทางโครงสร้างตรรกะ "การอธิบาย" กับ "การโต้แย้ง" (Argument) นั้น เหมือนกันเป็นครับ คือมีเหตุมิผลนำไปสู่ทสรุป แต่จุดประสงค์ต่างกัน: การโต้แย้ง (Argument): พยายามพิสูจน์ว่าบางอย่าง "จริง" (เรายังไม่เชื่อ เลยต้องหาเหตุผลมาจูงใจ) การอธิบาย (Explanation): พยายามบอกว่า "ทำไม" สิ่งที่เรายอมรับว่าจริงอยู่แล้วนั้น ถึงเป็นเช่นนั้น (เรารู้ว่ามันจริง แต่เราอยากรู้ว่ามาที่ไป) ในการอธิบาย เราเรียกสิ่งที่ต้องการอธิบายว่า Explanandum และเรียกชุดเหตุผล/กฎเกณฑ์ที่ใช้มาอธิบายว่า Explanans ครับ

2. ตัวอย่าง: ทำไมก้อนหินถึงตกลงพื้น? ลองดูตัวอย่างการอธิบายแบบ D-N Model นะครับ เหมือนกันว่าการอธิบายที่ดีต้องประกอบด้วย กฎทางวิทยาศาสตร์ (Laws) และ ข้อเท็จจริง (Facts): กฎ: $F = \frac{GM}{r^2}$ (กฎแรงโน้มถ่วงของนิวตัน) 2 กฎ: $F = ma$ (กฎแรงเท่ากับมวลคูณความเร่ง) ข้อเท็จจริง: ก้อนหินมีมวล 1 กิโลกรัม ข้อเท็จจริง: โลกมีมวล

มหาศาล ($3 \times 5.9 \times 10^{24}$ กิโลกรัม) 4 ข้อเท็จจริง: ก้อนหินถูกปล่อยในที่สูงข้อเท็จจริง: ไม่มีแรงอื่นมากัน (เช่น ลมพายุ) บทสรุป (Explanandum): ก้อนหินจึงตกลงสู่พื้นโลกนักศึกษาจะเห็นว่า ถ้าเรามีกฎ และข้อเท็จจริงครบถ้วน ผลลัพธ์มันจะถูก "ปีบบังคับตามตรรกะ" (Deductively Entail) ให้เกิดขึ้นอย่างหลีกเลี่ยงไม่ได้ นี่คือมาตรฐานของ "การอธิบายที่สมบูรณ์" ครับ

3. จุดอ่อนที่น่าขำของโนเมเดนี้แม้โนเมเดนี้จะดูดี แต่มันก็มีปัญหาครับ อาจารย์อยากยกตัวอย่างคลาสสิกที่ตลาดดีมาให้ดู: กฎ: ผู้ชายที่กินยาคุณกำเนิดจะไม่ตั้งครรภ์ข้อเท็จจริง: นายบูรุษเป็นผู้ชาย และเขากินยาคุณกำเนิดบทสรุป: นายบูรุษจึงไม่ตั้งครรภ์ในทางตรรกะ การอธิบายนี้ "ถูกต้อง" ตามกฎ D-N ทุกประการครับ แต่มันเป็น "การอธิบายที่แย่" เพราะยาคุณกำเนิด ไม่เกี่ยวข้อง (Irrelevant) กับการที่บูรุษไม่ท้อง (เขามิท้อง เพราะเขามีปัญหา!) ปัญหานี้ทำให้เราเห็นว่า การอธิบายที่ดีต้องมีเรื่องของ "ความเกี่ยวข้องเชิงสาเหตุ" ไม่ใช่แค่โครงสร้างทางตรรกะเท่านั้น

4. บทเรียนสู่ความสำเร็จในการเรียนอาจารย์อยากให้เคล็ดลับอย่างหนึ่งครับ ตลอดชีวิตการเป็นนักศึกษา พวกราถูกสั่งให้ "อธิบาย" มาตลอด แต่แทบไม่มีใครบอกเลยว่าการอธิบายที่ดีคืออะไรเคล็ดลับ: หากนักศึกษาเขียนตอบข้อสอบโดยคิดว่ากำลังสร้าง "โครงสร้างการโต้แย้ง" ที่มีทั้ง กฎเกณฑ์ทั่วไป และ ข้อเท็จจริงเฉพาะเรื่อง มาสนับสนุนบทสรุป เกรดของนักศึกษาในหลาย ๆ วิชาจะดีขึ้นอย่างน่าตกใจเลยครับ

5. ก้าวต่อไป: จากยุมสุ คาร์ล ปีอปเปอร์ (Karl Popper) เรายได้เห็นแล้วว่า กลุ่ม Positivists พยายามแก้ปัญหาของยุมองย่างไร: เรื่องเหตุและผล: บางคนบอกว่า ช่างมันเถอะ วิทยาศาสตร์ไปต่อได้โดยไม่ต้องสนใจ "พลังลึกลับ" ของเหตุผล แค่มีกฎที่ทำนายได้ก็พอเรื่องการอนุมาน (Induction): นี่คือปัญหาใหญ่ที่กลุ่มนี้พยายามแก้แต่ไม่ค่อยสำเร็จ และนั่นคือจุดที่ คาร์ล ปีอปเปอร์ จะก้าวเข้ามาร่วมกับไอเดียใหม่ที่ว่า "วิทยาศาสตร์ไม่ได้เริ่มจากการอนุมาน แต่เริ่มจากการพยายามพิสูจน์ว่า มันผิด!"

นักศึกษาครับ... ถ้านักศึกษาต้องอธิบายว่า "ทำไมวันนี้ตัวเองถึงมาเข้าเรียนสาย" โดยใช้ D-N Model (ต้องมีกฎทั่วไป + ข้อเท็จจริงเฉพาะ) นักศึกษาจะวางโครงสร้างมันยังไงให้ดูมีน้ำหนักที่สุดครับ? ลองส่งคำตอบสั้นๆ มาให้อาจารย์ดูหน่อยนะ! คابหน้า เราจะไปทำความรู้จักกับ คาร์ล ปีอปเปอร์ ชายผู้เปลี่ยนโลกหน้าปรัชญาวิทยาศาสตร์ด้วยแนวคิด "Falsification" ครับ!

Karl Popper

86

Karl Popper was a philosopher in Vienna during the reign of Logical Positivism, but he was not himself a Positivist. Popper is best known for his contributions to the problem of induction and

the demarcation problem. In both cases his views were critical of the Logical Positivists.

Conjecture and Refutation

As you will recall, Hume argues that inductive arguments fail to provide rational support for their conclusions. His reason for taking induction to be irrational is that every inductive argument assumes that unobserved events will follow the pattern of observed events and this assumption cannot be supported either deductively or inductively. No purely deductive support can be given for this principle of induction because it is not a mere truth of logic. And any inductive argument offered in support of the inductive principle that unobserved cases will be like observed cases will be circular because it will also employ the very principle of induction it tries to support as a premise.

Popper accepted Hume's conclusion that inductive inference is not rationally justifiable. He takes the problem of induction to have no adequate solution. But he rejects the further conclusion that science therefore yields no knowledge of the nature of the world. With Hume, Popper holds that no number of cases offered as confirmation of a scientific hypothesis yields knowledge of the truth of that hypothesis. But just one observation that disagrees

with a hypothesis can refute that hypothesis. So while empirical inquiry cannot provide knowledge of the truth of hypotheses through induction, it can provide knowledge of the falsity of hypotheses through deduction.

In place of induction, Popper offers the method of conjecture and refutation. Scientific hypotheses are offered as bold conjectures (guesses) about the nature of the world. In testing these conjectures through empirical experiment, we cannot give positive inductive reasons for thinking that they are true. But we can give reasons for thinking they are false. To see how this works, let's look at the pattern of reasoning employed in testing a scientific hypothesis using induction on the one hand, and Popper's deductive method of conjecture and refutation on the other. First, in designing an experiment, we determine what we should expect to observe if the hypothesis is true. Using induction, if our observation agrees with our expectation, we take the hypothesis to be inductively confirmed. The pattern of reasoning looks like this:

1. If H , then O

2. O

3. Therefore, H

This pattern of reasoning is not deductively valid (generate a counterexample to see for yourself), and as an inductive argument it faces the problem of induction. So this pattern of reasoning fails to provide us with rational grounds for accepting H as true. But suppose that when we carry out our experiment, we observe “not O.” In this case our pattern of reasoning looks like this:

1. If H, then O

87

2. not O

3. Therefore, not H

This pattern of reasoning is deductively valid. To see this try to suppose that the premises are true and the conclusion is false. If the conclusion were false, then ‘H’ would be true. And, given this and the truth of the first premise, ‘O’ would follow. But ‘O’ contradicts ‘not O’ which is asserted by the second premise. So it is not possible for the premises to be true and the conclusion false. In other words, the pattern of reasoning here is deductively valid.

The latter is the pattern of reasoning used in the method of conjecture and refutation. It is a deductively valid pattern that makes no use of inductive confirmation. It should now be clear how Popper's method of conjecture and refutation works and how empirical inquiry making use of this method can provide us with knowledge of the world (or rather, how the world isn't) while avoiding the problem of induction.

According to Popper, there is no rational methodology or logic for evaluating how scientists come up with hypotheses. They are just conjectures and no amount of evidence is capable of inductively confirming hypotheses in the sense of giving us positive reason for thinking our hypotheses are true. Evidence in agreement with a hypothesis never provides it with inductive confirmation. If all the evidence is in agreement with a hypothesis, we can say that it is “corroborated.” To say that a hypothesis is corroborated is just to say that it has survived our best attempts at refutation. But contrary evidence can decisively refute hypotheses.

Demarcation through Falsifiability

The demarcation problem is the problem of distinguishing science from other things, from poetry to religion to obscure

metaphysics. Popper offers an alternative to the Positivist's verificationist theory of meaning in addressing this problem. The Positivist's solution to the demarcation problem had the downside of denying that we can assert as true that it is wrong to torture innocent babies just for fun. Popper's view of the matter avoids this unsavory consequence.

Popper's method of conjecture and refutation suggests his criterion for distinguishing science from non-science. For it to be possible to refute a hypothesis requires that there be possible observations that would give us grounds for rejecting the hypothesis. We can only scientifically investigate hypotheses that take observational risks, those that are exposed to the possibility of being shown false through observation. That is, we can take a hypothesis to be scientific if and only if it is falsifiable. For a hypothesis to be falsifiable we must be able to specify possible observational conditions that would be grounds for rejecting the hypothesis as false. But this does not mean that that it will be proven false or that it can be shown to be false (either of these confusions would lead to the absurd view that a claim is only scientific if it is false). Let's look at some examples to make this clear.

Consider the hypothesis that all crows are black. We can specify observable conditions under which we would count this as false. Namely, seeing a white crow, or a green one. Being able to

88

specify the observational conditions under which we would reject this hypothesis doesn't mean that it false. Suppose the hypothesis is true. It is still a claim that takes risks in the face of observation because we know that some possible observations would refute it. So the hypothesis that all crows are black is falsifiable.

Now consider claims made by astrology. These are typically formulated in such a vague way that any eventuality could be interpreted as affirming the astrologer's predictions. If there are no possible observations that could refute astrology, then it is not scientific. Some astrologers might make specific and concrete predictions. These might get to claim that they are being scientific on Popper's view, but to the degree that astrologers do take risks of being refuted by observation, they have been refuted too often.

Political ideologies often fail to pass the falsifiability test. Popper was especially critical of Marxism which was very popular with the Viennese intellectuals he knew in his youth. Marxists seemed to have an explanation for everything. The inevitability of Marxist revolution was illustrated by its rising popularity in much of Europe. But if Americans, for instance, were not rebelling against their capitalist oppressors it was only because they had yet to see how alienating capitalism is. The conditions for revolution just weren't yet ripe. But they will be, says the confident Marxist. Popper's key insight was that a theory that can explain everything that might happen doesn't really explain anything. It is empty.

Today, Popper might make the same criticism of very different political ideologies. If free markets don't fix every problem, the libertarian can always complain that this is only because they have not been allowed to function freely enough. If government doesn't fix every problem, the big government liberal can always complain that big government hasn't been empowered enough (when we get around to political philosophy we will find reason to doubt that there are very many liberals that really fit this stereotype). Extreme views are only made plausible to their fans by elaborate schemes of excuses for why they don't work out as

well as they should. Popper would say that in politics as in science, we need to try things where we can honestly examine the consequences and hold ourselves accountable when they don't go well by trying something else.

Auxiliary Hypotheses

Here we will describe an objection to Popper's method of conjecture and refutation that will set the stage for introducing the views of Thomas Kuhn. According to Popper, we make progress in science by refuting false conjectures. We never have inductive grounds for holding that proposed scientific hypotheses and explanations are true, but we can narrow in on the truth by eliminating the falsehoods. Our hypotheses lead us to expect certain observations. If we do not observe what we expect to observe, then we have non-inductive grounds for rejecting our hypothesis. Again, the pattern of reasoning followed in eliminating false hypotheses through scientific inquiry looks like this:

1. If H , then O

89

2. Not O

3. Therefore, not H

This is the deductively valid pattern of reasoning known as modus tollens. However, we rarely get to test hypotheses in isolation. Typically, our expectation of a given observation is based on the hypothesis we are interested in testing in conjunction with any number of background assumptions. These background assumptions are the auxiliary hypotheses. If we take into account the auxiliary hypotheses, the pattern of reasoning used in Popper's method of conjecture and refutation looks like this:

1. If H and AH, then O

2. Not O

3. Therefore, not H

But this argument pattern is not valid. The observation (not O) might indicate the falsity of one of the auxiliary hypotheses (AH) rather than the falsity of (H), the hypothesis we set out to test. What this tells us is that the implications of other than expected observations are always ambiguous. When our observations don't accord with our expectations it tells us that at least one of the assumptions or hypotheses that lead us to expect a given

observation is false. It may be the hypothesis we set out to test, or it may be one of our auxiliary hypotheses. But unexpected observations don't tell us which is false.

Here's a nice example of auxiliary hypotheses at work in everyday reasoning. Our hypothesis is that Hare is faster than Tortoise. This hypothesis leads us to expect that Hare will win a race against Tortoise. But suppose that, contrary to our expectation, we observe Tortoise winning the race. The hypothesis that Hare is faster than Tortoise is not thereby falsified because of the presence of a number of auxiliary hypotheses. Among these auxiliary hypotheses are the following: (i) Hare did not stop in the middle of the race for a snack, (ii) Hare did not get run over while crossing the road, (iii) Hare did not get eaten by Coyote during the race, (iv) Hare did not get entangled in a philosophical discussion about the rationality of scientific methods with his friend Gopher before crossing the finish line. When Tortoise crosses the finish line first, that tells us that either Tortoise is faster than Hare or one of these or many other auxiliary hypotheses is false. But Tortoise winning doesn't tell us which. The unexpected observation thus fails to cleanly refute our hypothesis.

สวัสดีครับนักศึกษาทุกคน วันนี้เราจะมาทำความรู้จักกับนักปรัชญาคนสำคัญที่เชื่อว่า คาร์ล ปีอปเปอร์ (Karl Popper) ครับ แม้เขาจะใช้ชีวิตอยู่ในเวียนนา ช่วงเดียวกับกลุ่มปัญญาณิยมเชิงตรรกะ (Logical Positivists) แต่เขามิใช่พวกเดียวกันนะครับ แต่ยังเป็นคนวิจารณ์กลุ่มนี้อย่างหนักด้วย

ปีอปเปอร์มีบทบาทสูงมากในการแก้ปัญหา 2 เรื่อง คือ ปัญหาการอนุมาน (Problem of Induction) และ ปัญหาการแบ่งเขตวิทยาศาสตร์ (Demarcation Problem) ครับ

1. การคาดการณ์และการหักล้าง (Conjecture and Refutation)

จำได้ไหมครับที่ยูมบอกว่า "การอนุมาน" (Induction) นั้นไร้เหตุผล เพราะเราเอออดีตมาตัดสินอนาคตไม่ได้? ปีอปเปอร์ยอมรับครับว่า "ใช่ ยูมพูดถูก การอนุมานใช้ไม่ได้จริง" แต่เขามิ่ยยอมรับว่าวิทยาศาสตร์จะไร้สาระตามไปด้วย ปีอปเปอร์เสนอทางออกที่ชاقฉลาดมาก:

เรายืนยันว่าจริงไม่ได้ แต่เรายืนยันว่าเท็จได้: การสังเกตว่า "ทรงส์ตัวที่ 1, 2, 3... เป็นสีขาว" ไม่สามารถพิสูจน์ได้ว่า "ทรงส์ทุกตัวในโลกสีขาว" แต่การเจอ "ทรงส์สีดำแค่ตัวเดียว" สามารถหักล้าง ความเชื่อนั้นได้ทันทีด้วยตรรกะแบบนิรนัย (Deduction) ครับ

วิธีการของป้อปเปอร์:

การคาดการณ์ (Conjecture): นักวิทยาศาสตร์ตั้งสมมติฐานแบบกล้าหาญ (เดาเอาเลย!)

การหักล้าง (Refutation): พยายามออกแบบการทดลองเพื่อ "จับผิด" หรือ พิสูจน์ว่ามัน "ผิด" ให้ได้

ถ้าสมมติฐานนั้นรองจากการพยายามทั้งหมดมาได้ ป้อปเปอร์จะไม่บอกว่า มัน "จริง" นะครับ แต่จะใช้คำว่ามันได้รับการ "สนับสนุน" (Corroborated) คือมันยังสอบผ่านอยู่จนกว่าจะโดนพิสูจน์ว่าผิดในวันหน้า

2. การแบ่งเขตด้วย "การพิสูจน์ว่าเป็นเท็จได้" (Falsifiability)

ป้อปเปอร์ใช้หลักการนี้มาแยก "วิทยาศาสตร์" ออกจาก "สิ่งที่คิดไปเอง" ครับ วิทยาศาสตร์: ต้องยอมรับความเสี่ยง คือต้องระบุได้ว่า "ถ้าเกิดเหตุการณ์แบบไหนขึ้น ฉันจะยอมรับว่าทฤษฎีของฉันผิด"

วิทยาศาสตร์เทียม (Pseudoscience): มักจะอธิบายได้ทุกอย่าง ไม่ว่าจะเกิดอะไรขึ้นทฤษฎีก็ยังถูกเสมอ เช่น โทรศาสตร์ หรือจิตวิเคราะห์แบบดั้งเดิม

คำคมของป้อปเปอร์: "ทฤษฎีที่อธิบายได้ทุกอย่างที่เกิดขึ้น จริงๆ แล้วไม่ได้อธิบายอะไรเลย" เพราะมันไม่มีความเสี่ยงทางข้อมูล (Observational risks)

3. ປັນຍາຂອງປົກປະກົດ: ສມມຕື້ອງສົງເສົາ (Auxiliary Hypotheses)

ອຢາງໄຮກ້ຕາມ ວິທີການຂອງປົກປະກົດກີ່ມີຈຸດອ່ອນຄຮັບ ທີ່ເຮັດວຽກກ່ຽວຂ້ອງ "ສມມຕື້ອງສົງເສົາ" ເວລາເຮົາທີ່ດີວ່າ ເວລາເຮົາເຮົາທີ່ຍັງບໍ່ໄດ້ທົດສອບແກ່ທຸກໆລັກ (H) ອຳຍ່າງເດືອນ ແຕ່ເວລາແບບພ່ວງເຈື້ອນໄຂອື່ນໆ (AH) ໄປດ້ວຍ ເຊັ່ນ:

ທຸກໆລັກ (H) ແລະ ເຄື່ອງມືວັດຂອງໜັນ (AH) ຖຸກຕ້ອງ ພລຕ້ອງອອກມາເປັນ (O)
ແຕ່ພລອອກມາເປັນ "ໄມ່ O"

ປັນຍາ: ອະໄຮຜິດລ່ວ? ທຸກໆລັກ (H) ອາຈຈະຖຸກກີ່ໄດ້ ແຕ່ "ເຄື່ອງມືວັດ" (AH)
ອາຈຈະພັ້ນ!

ຕ້ວຍຢ່າງຄລາສສຶກ: ກຣະຕ່າຍກັບເຕົາ

ສມມຕື້ອງສົງເສົາ: "ກຣະຕ່າຍວິ່ງເຮົວກວ່າເຕົາ"

ພລກາທົດລອງ: "ເຕົາໜະ"

ເຮົາຈະບອກວ່າ "ກຣະຕ່າຍວິ່ງໜ້າກວ່າເຕົາ" ທັນທີເລີຍໄໝມ? ໄມ່ຄຮັບ! ເພຣະອາຈມີ
ສມມຕື້ອງສົງເສົາວ່າ: ກຣະຕ່າຍແບບໄປນອນຫລັບ (AH1), ທີ່ອກຮະຕ່າຍໂດນຮັກຫັບ
ຮະຫວ່າງທາງ (AH2) ເປັນຕົ້ນ

ດັ່ງນັ້ນ ການທີ່ພລກາທົດລອງອອກມາໄມ່ເປັນຕາມຄາດ ຈຶ່ງໄມ່ໄດ້ "ຫັກລ້າງ" ທຸກໆລັກ
ໄດ້ຈ່າຍໆ ແລະ ຊັດເຈນອ່າງທີ່ປົກປະກົດໃນໜັງແຮກຄຮັບ

ສຽງສັງຫ້ຍາກອາຈາරຍ

ປຶ້ອງປ່ອງສອນໃຫ້ເຮົາເປັນນັກວິທາສາສົດທີ່ "ຄ່ອມຕົ້ວ" ຄຣັບ ຄື່ອພຣ້ອມຈະຍອມຮັບວ່າເຮົາອາຈະຜິດໄດ້ເສົ່ວໂລງ ແລະ ອ້າວໃຈຂອງວິທາສາສົດໄໝໃໝ່ການຫາພວກມາສັນບສູນຕົ້ວເອງ ແຕ່ ຄື່ອກາກລ້າເພື່ອຫຼຸ້ນໜ້າກັບການໂດນຈັບຜິດ

ນັກສຶກສາຮັບ... ໃນຈິວິດປະຈຳວັນຂອງເຮົາ ມີຄວາມເຂື່ອໄຫນບ້າງໄໝມຮັບທີ່ນັກສຶກສາຮູ້ສຶກວ່າ "ໄໝວ່າຈະມີໜັກສູນອະໄຮມາຈັດຈ້າງ ຈັນກີໄໝມີວັນເຂື່ອວ່າມັນຜິດ" ດັ່ງນີ້... ປຶ້ອງປ່ອງຈະບອກວ່ານັ້ນໄມ້ໃໝ່ຄວາມຮູ້ທາງວິທາສາສົດນະຄຣັບ ນັກສຶກສາ ດີວ່າຄວາມເຂື່ອແບບນັ້ນມີອັນຕາຍໄໝມຮັບ?

ໃນໜ້າຂ້ອງລັດໄປ ເຮົາຈະໄປພບກັບ ໂຮມສ ຄູນ (Thomas Kuhn) ຜູ້ທີ່ຈະບອກວ່າ ວິທາສາສົດໄໝໄດ້ກ້າວໜ້າແບບເປັນເສັ້ນຕຽບອ່າງທີ່ປຶ້ອງປ່ອງຄືດ ແຕ່ເປັນເຮືອງຂອງການ "ປົກລົງ" ຄຣັບ! ມີຄໍາຄາມເຮືອງການຈັບຜິດທຸ່ມງົງໄໝມຮັບ?

.....

Thomas Kuhn

The Positivists and Karl Popper offer attempts to describe and develop rational methods for scientific inquiry. In so doing, they offer normative theories of scientific practice. That is, they offer views about how scientific inquiry should proceed and what

counts as good scientific practice. Kuhn's philosophy of science is inspired by the history of science and seeks to describe how science actually develops. Kuhn's undertaking is not aimed at revealing universal norms of

90

rational scientific practice. But his views have been taken by some to imply that the development of science is not guided by general norms of rationality, at least at crucial revolutionary periods of theory change.

Kuhn describes three stages in the development of a science. The first stage is called “pre-paradigm science.” In pre-paradigm science, people seeking to understand an observed phenomenon share no common stock of background theory. Each inquirer essentially starts from scratch. Under these circumstances, very little progress is made. We have nothing resembling a tradition that can be passed from one person on to her students for further development and investigation. The various theories of the nature of the world proposed by pre-Socratic philosophers might be considered an example of pre-paradigm physics.

At some point, someone develops an account of the observed phenomenon that has enough substance and explanatory power to attract the attention of a community of individuals who will then carry on inquiry along the proposed lines. This marks the beginnings of normal science. Kuhn calls the sort of account of the observed phenomenon that is required for this to happen a paradigm.

A paradigm consists of the following four things:

1. A body of theory including laws: For instance, the basic laws of motion.
2. Background metaphysical assumptions: For instance, that there is an external world and that our senses provide a reasonably reliable guide to its nature, that we share common objects of perception, etc.
3. Values: Here we have in mind primarily epistemological values including norms of rationality. The idea here is that a paradigm tells you what counts as a phenomenon that requires explanation and provides a standard for what counts as an adequate explanation of that phenomenon.

4. Exemplars: These are textbook applications of the theory to the phenomenon it is intended to explain. Classical physics is taught through exemplars that include applying Newton's laws to swinging pendulums and forces exerted on springs.

Normal science, the second of Kuhn's three stages, is carried out within a paradigm. Working within a paradigm, the scientist normally accepts the core elements of the paradigm as dogma. The scientist's job in the stage of normal science is to work out the details of the paradigm without calling into question the central laws of the paradigm, or the epistemic standards it presupposes. In the normal stage, we can think of science as puzzle solving. Investigators are not advancing bold new theories, but applying the accepted theoretical framework in new and novel sorts of cases. During normal science, a paradigm gets worked out in detail.

In the course of normal science, problems that resist resolution with the paradigm often arise. If these "recalcitrant" problems remain long enough, they become what Kuhn calls anomalies. As the details of a paradigm get worked out, the anomalies become harder and harder to ignore.

Researchers in need of projects may focus more and more scrutiny on the remaining anomalies. Continued and intensified but unsuccessful attempts to resolve anomalies can give rise to a crisis in normal science. Such a crisis makes it possible to call into question core elements of the paradigm that had been previously held dogmatically.

Persistent anomalies in a science can provoke a crisis in which the paradigm itself is called into question. In this atmosphere, it is possible for scientists to propose and win wide acceptance for significant changes in the theoretical framework. Until persistent anomalies provide a crisis, however, the social conditions aren't ripe for revolution. Even if someone had great revolutionary ideas, they simply won't get a hearing with the community since it is committed to working out the details of the standing paradigm. Revolutions in thinking can't happen until the community is convinced that the old paradigm is irrevocably broken. When this does happen and an appropriate alternative to the old paradigm is developed and proposed, then and only then can what Kuhn calls a scientific revolution happen. In a scientific revolution, the scientific community abandons one paradigm in favor of another.

Once a new paradigm takes hold in the scientific community, normal science is resumed, the details of the new paradigm begin to get worked out and normal science continues until a new batch of anomalies emerges and provokes the next crisis.

A key insight of Kuhn's is that science is a community effort. We often hold a “great genius” vision of the history of science where the fabulous insights of very special individuals are what drive science forward. Kuhn would say this is a distorted picture. The great geniuses like Newton or Einstein can only launch a revolution in scientific thinking when a broader community of inquirers have prepared the field and created the conditions for the germination of the seeds of a revolution in thinking. The history of science needs to be understood in terms how these broader communities progress to the point where revolutionary thinking is called for and can be fruitful. The great insights and discoveries never happen in a social vacuum.

Kuhn thinks that the paradigm shift that occurs in the course of a scientific revolution is comparable to a gestalt switch as in the duck/rabbit image below.

Seeing this image as a duck blocks out seeing it as a rabbit. Something similar happens in the case of a paradigm shift. In a paradigm shift one drops one conceptual framework in favor of

92

another. When we grasp and evaluate the claims made in normal science, we do so in the context of acceptance of a paradigm. Kuhn suggests that the very meaning of the claims made in paradigm-based normal science can only be comprehended relative to the conceptual framework of that paradigm. A result of this is that from the perspective on one paradigm, we are never really in a position to evaluate the claims of normal science under a different paradigm. In this sense, paradigms are said to be incommensurable (lacking any common measure or independent standard of comparison).

It is tempting to see the cycle of normal science and revolutionary science as a Popper style process of conjecture and refutation at the level of paradigms. However, Kuhn maintains that paradigms are never exactly refuted by intractable anomalies. Rather, when the scientific community enters a period of crisis and an attractive alternative to the old paradigm emerges, the community gives up on the old paradigm and

adopts the new one. Paradigms are not so much refuted as abandoned. This raises serious questions about whether paradigm shifts in scientific revolutions can be understood as rational processes. They would seem not to be if we think of human rational processes as in some way rule driven like logical rules of inference. But we might instead take Kuhn be revealing a richer view of human rationality.

On Kuhn's view, the methods and standards of science get articulated and refined through periods of normal science and are liable to undergo bigger shifts in periods of scientific revolution. What counts as good scientific inquiry and investigation cannot be specified independent of its history. We figure out what works as we encounter new challenges. The history of science reveals the practice of science to be dynamic and adaptive. Creativity and resourcefulness go into the hard-earned advances in our understanding of the world.

The broader moral of this story is that we should be highly suspicious of any attempt to boil the methods of science down to any specific series of steps. Rather, a good understanding of the many methods of science can only be had through a study of its history, its successes, and its failures. And even at this, our

appreciation of the methods of science must remain open ended. The story of science is far from finished, and so our understanding of its methods is likewise incomplete.

สวัสดีครับนักศึกษาทุกคน วันนี้เราจะมาพูดถึงนักคิดที่ทำให้วงการปรัชญา วิทยาศาสตร์ต้องสะเทือน และทำให้เราต้องมองประวัติศาสตร์วิทยาศาสตร์เปลี่ยนไปตลอดกาล เขาคือ โธมัส คูน (Thomas Kuhn) ครับ ในขณะที่กลุ่ม Positivists และ ปีอปเปอร์ พยายามบอกว่าวิทยาศาสตร์ "ควร" จะเป็นอย่างไร (Normative) คูนกลับเลือกที่จะไปดูว่าในประวัติศาสตร์จริงๆ นั้น วิทยาศาสตร์ "เป็น" อย่างไร (Descriptive) ซึ่งคำตอบที่เขาพบนั้นน่าตื่นเต้นมากครับ

1. วงจรของวิทยาศาสตร์: จากความวุ่นวายสู่การปฏิวัติ

คูนแบ่งพัฒนาการของวิทยาศาสตร์ออกเป็น 3 ช่วงหลักๆ ครับ:

ช่วงก่อนรับกรอบนักคิด (Pre-paradigm science): เป็นช่วงที่ต่างคนต่างคิด ไม่มีทฤษฎีใด ทุกคนเริ่มนับหนึ่งใหม่หมด ทำให้ความก้าวหน้าเกิดขึ้นช้ามาก

ໜ່າຍວິທີຢາລັກສົງຮົ່ວມຄວາມມົນ (Normal science): ເມື່ອມີຄຣຄນໜຶ່ງສ້າງຄໍາອົບຍາຍທີ່ທຽບພະລັງພວະຈະດຶງດູດນັກວິຈິ້ຍສ່ວນໃໝ່ໄດ້ ເຮັດວຽກສິ່ງທີ່ເຮັດວຽກ "ກະບວນທັນ" (Paradigm) ຂຶ້ນມາຮັບ

2. ກະບວນທັນ (Paradigm) ຄືອວ່າໄຮ?

ສໍາຮັບຄູນ ກະບວນທັນໄມ້ໃຊ້ແຄ່ທຸກໆ ແຕ່ມັນຄືອ "ແພັກເກຈ" ໃຫຍ່ທີ່ປະກອບດ້ວຍ:

ຕົວທຸກໆແລກງານ: ເຊັ່ນ ການຂອງນິວຕົ້ນ

ຄວາມເຊື່ອທາງອົກປະຈຸບາ: ເຊັ່ນ ຄວາມເຊື່ອວ່າໂລກກາຍນອກມີຈິງແລະສັງເກດໄດ້

ຄຸນຄ່າ: ມາຕຽນຮູ້ນ່າງວ່າອະໄຮຄືອ "ຄໍາອົບຍາຍທີ່ດີ"

ຕົວຢ່າງຕົ້ນແບບ (Exemplars): ໂຈທີ່ຕົວຢ່າງໃນຕໍ່າຮັບເຮັດວຽກທີ່ສອນໃຫ້ເຕີກາ ແກ້ປູ້ຫາຕາມແນວທາງຂອງທຸກໆ

ໃນໜ່າຍວິທີຢາລັກສົງຮົ່ວມຄວາມມົນ ນັກວິທີຢາລັກສົງຮົ່ວມຄວາມມົນ "ຕ່ອງຈຶ່ກອວ່ງ" ທີ່ໄດ້ຮັບກຳນົດກຳນົດ (Puzzle solving) ໂດຍໄມ້ສັງເກດໃນຕົວກະບວນທັນເລຍຄົບພວກເຂາແຄ່ພຍາຍາມຂໍາຍຮາຍລະເວີຍດຂອງທຸກໆ ໄກສະໜັບສິນໃຫ້ກວດສົບມາກື້ນເທົ່ານັ້ນ

3. วิกฤตและการปฏิวัติ (Crisis & Revolution)

เมื่อเวลาผ่านไป นักวิทยาศาสตร์จะเจอ "ปัญหาที่แก้ไม่ได้" หรือที่คุณเรียกว่า ความผิดปกติ (Anomalies)

ในช่วงแรก พวกเขาจะมองข้ามมันไป หรือหาข้อแก้ตัวให้ทฤษฎี แต่เมื่อความผิดปกติมีมากขึ้นเรื่อยๆ จนละเลยไม่ได้ จะเกิด สภาพวิกฤต (Crisis)

เมื่อถึงจุดนี้ "ศรัทธา" ในระบบวัฒนธรรมเดิมจะสั่นคลอน และถ้ามีกระบวนการทัศน์ใหม่ที่เสนอทางออกที่ดีกว่ามาแทนที่ จะเกิด การปฏิวัติวิทยาศาสตร์ (Scientific Revolution) ขึ้นครับ

คุณเปรียบเทียบการเปลี่ยนกระบวนการทัศน์เหมือนกับการเปลี่ยนการรับรู้ภาพ (Gestalt switch) เช่น ภาพ "เปิด-กระต่าย" นี้ครับ

เมื่อคุณมองเป็นเปิด คุณจะมองเห็นความจริงแบบหนึ่ง แต่พอคุณเปลี่ยนไปมองเป็นกระต่าย โลกทั้งใบของคุณจะเปลี่ยนไปเลย คุณบอกว่ากระบวนการทัศน์ที่ต่างกันนั้น "ไม่อาจเทียบเคียงกันได้" (Incommensurable) เพราะมันใช้ภาษาและมาตรฐานคนละชุดกัน

4. วิทยาศาสตร์คือกิจกรรมของชุมชน

ประเด็นสำคัญที่คุณเน้นคือ วิทยาศาสตร์ไม่ได้ก้าวหน้าเพรา "อัจฉริยะ" เพียงคนเดียว (เช่น นิวตัน หรือ ไอน์สไตน์) ที่จู่ๆ ก็คิดออกในที่ว่างเปล่า

การปฏิวัติจะเกิดขึ้นได้ก็ต่อเมื่อ "ชุมชนวิทยาศาสตร์" เตรียมพร้อมและยอมรับว่าระบบหัศน์เก่ามันพังแล้วเท่านั้น

วิทยาศาสตร์คือเรื่องของสังคม ประวัติศาสตร์ และการปรับตัว ไม่ใช่แค่กฎตระกูลที่พยายาม

สรุปสังท้ายจากอาจารย์

โรมัส คุณ สอนให้เราเห็นว่าวิทยาศาสตร์มีชีวิต มีความเคลื่อนไหว และไม่ได้สมบูรณ์แบบมาแต่ต้น แต่มันก้าวหน้าผ่านการยอมรับข้อผิดพลาดและการกล้าที่จะเปลี่ยนมุมมองใหม่ทั้งหมด

นักศึกษาครับ... ถ้าระบบหัศน์เปรียบเสมือน "แวนต้า" ที่เราใส่เพื่อมองโลก นักศึกษาคิดว่าตอนนี้เรามาทำให้แวนต้าที่สมบูรณ์ที่สุดแล้วหรือยัง? หรือเราแค่กำลังรอให้ "ความผิดปกติ" บางอย่างผลลัมมาจนแวนต้าแตก เพื่อที่จะได้เปลี่ยนแวนต้าใหม่ครับ?

บทต่อไปเราจะมาสรุปคำถาบทบทวนเกี่ยวกับปรัชญาวิทยาศาสตร์กันครับ คราวนี้ข้อสงสัยเรื่อง "ระบบหัศน์" สอดตามอาจารย์ได้เลยนะ!

.....

Review and Discussion Questions

1. How does the development of more powerful symbolic systems of logic boost Empiricism at the beginning of the 20th century?
2. Explain how the Logical Positivists extend Empiricism to the theory of meaning.
3. How is the verificationist theory of meaning used to address the demarcation problem?
4. What is a theory according to the Positivists?
5. Explain what's wrong with the view that theories are just very well supported hypotheses that are still not so certain.
6. What does it mean to regard a theory as an explanatory framework?
7. How do the Logical Positivists understand explanation?

8. How would Popper resolve (not solve) the problem of induction?
9. How does Popper address the demarcation problem?
10. Explain how auxiliary hypotheses challenge Popper's method of conjecture and refutation.
11. Explain pre-paradigm science. Why is little lasting progress made at this stage of science?
12. What is a paradigm?
13. How does normal science under a paradigm proceed?
14. What is an anomaly?
15. What conditions are necessary for a scientific revolution?
16. What does it mean to speak of competing paradigms as incommensurable?
17. How are the methods of science sensitive to its history?

สวัสดิครับนักศึกษาทุกคน เพื่อเป็นการส่งท้ายบทเรียนเรื่อง ปรัชญา วิทยาศาสตร์ (Philosophy of Science) ที่เราได้เรียนมาตั้งแต่กลุ่มปฐมวัย นิยมเชิงตรรกะ, คาร์ล ปีอปเปอร์ มาจนถึง โรมัส คุณ อาจารย์ได้สรุปคำถ้า ทบทวนที่จะช่วยให้พวกราเรียนภาพรวมของวิัฒนาการทางความคิดในบทนี้ ครับ

คำถามทบทวนและอภิปราย (Review and Discussion Questions)

กลุ่มปฎิฐานานิยมเชิงตรรกะ (Logical Positivism)

การพัฒนา ระบบตรรกศาสตร์สัญลักษณ์ (Symbolic Logic) ที่ทรงพลังขึ้น ช่วยส่งเสริมแนวคิดประสบการณ์นิยม (Empiricism) ในช่วงต้นศตวรรษที่ 20 ได้อย่างไร?

จงอธิบายว่ากลุ่มปฎิฐานานิยมเชิงตรรกะขยายขอบเขตของประสบการณ์นิยมไปสู่ "ทฤษฎีแห่งความหมาย" (Theory of Meaning) อย่างไร?

หลักการพิสูจน์ความจริง (Verificationist Theory of Meaning - VTM) ถูกนำมาใช้แก้ปัญหา การแบ่งเขต (Demarcation Problem) อย่างไร?

ในมุมมองของกลุ่ม Positivists "ทฤษฎี" คืออะไร?

จงอธิบายว่าทำไมทัศนะที่บอกว่า "ทฤษฎีก็แค่สมมติฐานที่ได้รับการสนับสนุนอย่างดีแต่ยังไม่มีความแน่นอน" ถึงเป็นทัศนะที่ ผิด?

การมองว่าทฤษฎีคือ "กรอบในการอธิบาย" (Explanatory Framework) หมายความว่าอย่างไร?

กลุ่มปฎิฐานานิยมเชิงตรรกะเข้าใจเรื่อง "การอธิบาย" (Explanation) อย่างไร? (ลองนึกถึง D-N Model นะครับ)

คาร์ล ปีอปเปอร์ (Karl Popper)

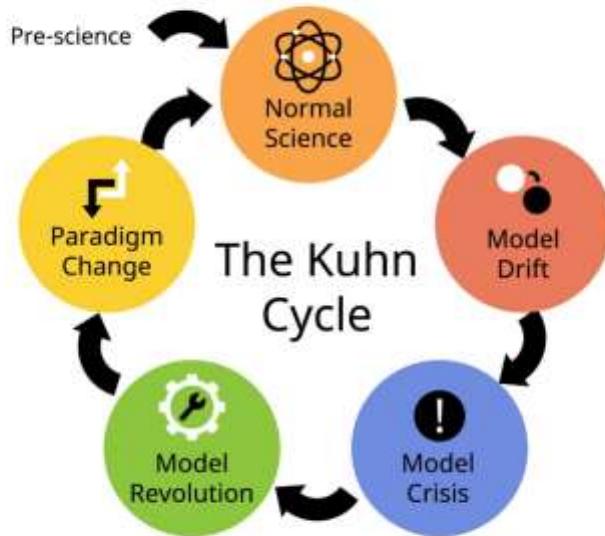
ปีอปเปอร์จัดการ (Resolve) ปัญหาการอนุมาน (Problem of Induction) อย่างไร? (โดยที่ไม่ได้แก้ปัญหาให้หายไป แต่เสนอทางเลี่ยง)

ปีอปเปอร์จัดการกับปัญหา การแบ่งเขต (ระหว่างวิทยาศาสตร์กับสิ่งที่ไม่ใช่) อย่างไร?

จงอธิบายว่า สมมติฐานเสริม (Auxiliary Hypotheses) ส่งผลต่อความท้าทายในวิธีการ "คาดการณ์และการหักล้าง" (Conjecture and Refutation) ของปีอปเปอร์อย่างไร?

โธมัส คูน (Thomas Kuhn)

จงอธิบาย ช่วงก่อนรับกระบวนการทัศน์ (Pre-paradigm science) และทำไม ในช่วงนี้ถึงแทบจะไม่มีความก้าวหน้าในเชิงวิทยาศาสตร์เลย?


กระบวนการทัศน์ (Paradigm) คืออะไร?

วิทยาศาสตร์ปกติ (Normal science) ภายใต้กระบวนการทัศน์หนึ่งๆ มีลักษณะ การดำเนินไปอย่างไร?

ความผิดปกติ (Anomaly) คืออะไร?

เงื่อนไขใดบ้างที่จำเป็นต่อการเกิด การปฏิวัติวิทยาศาสตร์ (Scientific Revolution)?

การกล่าวว่ากระบวนการทัศน์ที่กำลังแข่งขันกันนั้น "ไม่อาจเทียบเคียงกันได้" (Incommensurable) หมายความว่าอย่างไร?

วิธีการทางวิทยาศาสตร์

มีความอ่อนไหวหรือเปลี่ยนแปลงไปตาม

ประวัติศาสตร์ ของมันเองได้อย่างไร?

สรุปจากอาจารย์

นักศึกษาจะเห็นว่า วิทยาศาสตร์ไม่ได้เป็นเพียงแค่ชุดของความจริงที่ตายตัว แต่มันคือ "กระบวนการทางปัญญา" ที่มีการปรับปรุงเครื่องมือ (ตระกะ), เกณฑ์การตัดสิน (การพิสูจน์เท็จ), และมุ่งมองโลก (กระบวนการทัศน์) อยู่ตลอดเวลา

มีคำถามข้อไหนที่นักศึกษารู้สึกว่า "เข้าใจยากที่สุด" หรืออยากรู้มีอะไรบ้าง? ยกตัวอย่างเปรียบเทียบกับวิทยาศาสตร์ที่เรียนอยู่ในปัจจุบันใหม่ครับ? อาจารย์พร้อมจะ "อธิบาย" (แบบ D-N Model!) ให้ฟังต่อครับ

ປະຈຸບາເປື້ອງຕົ້ນ ແປລໂດຍ ພຣະມາຫາສຸວເພົາ ວິຊາວຸດທະນາ ວິທຍາລັບສົງຮົນຄວາມມົນ

ຈບບທີ 7